Closed conformal vector fields on pseudo-Riemannian manifolds

نویسنده

  • Domenico Antonino Catalano
چکیده

∇XV = λX for every vector field X. (1.2) Here ∇ denotes the Levi-Civita connection of g. We call vector fields satisfying (1.2) closed conformal vector fields. They appear in the work of Fialkow [3] about conformal geodesics, in the works of Yano [7–11] about concircular geometry in Riemannian manifolds, and in the works of Tashiro [6], Kerbrat [4], Kühnel and Rademacher [5], and many other authors. If V is lightlike on (M,g), then from (1.2), we get Xg(V ,V)= 2g∇XV ,V = 2λg(X ,V)= 0 (1.3) for every vector field X . Thus λ≡ 0 and V is parallel. About lightlike parallel vector fields, we have the following theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces of Conformal Vector Fields on Pseudo-riemannian Manifolds

We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.

متن کامل

Conformal Transformations of Pseudo-Rie- mannian manifolds

This is a survey about conformal mappings between pseudo-Riemannian manifolds and, in particular, conformal vector fields defined on such. Mathematics Subject Classification (2000). Primary 53C50; Secondary 53A30; 83C20.

متن کامل

On Concircular and Torse-forming Vector Fields on Compact Manifolds

In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.

متن کامل

Gallot-Tanno theorem for pseudo-Riemannian metrics and a proof that decomposable cones over closed complete pseudo-Riemannian manifolds do not exist

The equation also appears in investigation of geodesically equivalent metrics. Recall that two metrics on one manifold are geodesically equivalent, if every geodesic of one metric is a reparametrized geodesic of the second metric. Solodovnikov [9] has shown that Riemannian metrics on (n > 3)−dimensional manifolds admitting nontrivial 3-parameter family of geodesically equivalent metrics allow n...

متن کامل

Sum of Squares Manifolds: the Expressibility of the Laplace–beltrami Operator on Pseudo-riemannian Manifolds as a Sum of Squares of Vector Fields

In this paper, we investigate under what circumstances the Laplace–Beltrami operator on a pseudo-Riemannian manifold can be written as a sum of squares of vector fields, as is naturally the case in Euclidean space. We show that such an expression exists globally on one-dimensional manifolds and can be found at least locally on any analytic pseudo-Riemannian manifold of dimension greater than tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006